
Microprocessors and Microsystems 76 (2020) 103086

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A method for emb e dding a computer vision application into a

wearable device

Elias T. Silva Jr ∗, Fausto Sampaio, Lucas C. da Silva, David S. Medeiros, Gustavo P. Correia

Computer Science Department, Federal Institute of Education, Science and Technology of Ceará. Av Treze de Maio, 2081. Fortaleza, CE, Brazil

a r t i c l e i n f o

Article history:

Received 21 August 2019

Revised 12 February 2020

Accepted 9 March 2020

Available online 10 March 2020

Keywords:

Embedded systems

Design space exploration

Computer vision

Pattern detection

Low-power wearable applications

a b s t r a c t

Pattern classification applications can be found everywhere, especially the ones that use computer vision.

What makes them difficult to embed is the fact that they often require a lot of computational resources.

Embedded computer vision has been applied in many contexts, such as industrial or home automation,

robotics, and assistive technologies. This work performs a design space exploration in an image classi-

fication system and embeds a computer vision application into a minimum resource platform, targeting

wearable devices. The feature extractor and the classifier are evaluated for memory usage and computa-

tion time. A method is proposed to optimize such characteristics, leading to a reduction of over 99% in

computation time and 92% in memory usage, with respect to a standard implementation. Experimental

results in an ARM Cortex-M platform showed a total classification time of 0.3 s, maintaining the same

accuracy as in the simulation performed. Furthermore, less than 20 KB of data memory was required,

which is the most limited resource available in low-cost and low-power microcontrollers. The target ap-

plication, used for the experimental evaluation, is a crosswalk detector used to help visually impaired

persons.

© 2020 Elsevier B.V. All rights reserved.

1

c

t

H

p

f

o

C

s

p

w

c

l

t

a

d

S

M

l

v

s

w

v

i

b

m

o

p

i

o

w

S

t

s

o

h

0

. Introduction

In order to increase efficiency and productivity in a variety of

ontexts, computer vision systems have been developed and used

o classify patterns and detect objects in products and processes.

owever, many times these systems demand high processing ca-

acity and large data memory, which imposes an extra challenge

or embedding those applications. The target application platform,

ften has resource constraints, such as low memory sizes and low

PU performance, which must be taken into account in the design

tages.

The development of machine learning solutions to practical

roblems on workstations, where there are no limitations of hard-

are resources, is common but then the exploration of the real

onstraints to embed these machine learning applications is often

eft as a future work.

An interesting subset of these applications is targeted to fulfill

he necessities of visually impaired persons, and the device is usu-

lly a wearable device placed on the user’s body. These wearable

evices have certain restrictions, as they require lightweight and
∗ Corresponding author.

E-mail addresses: elias@ifce.edu.br (E.T. Silva Jr), faustos@ppgcc.ifce.edu.br (F.

ampaio), lucas.costa@lit.ifce.edu.br (L.C. da Silva), david.silvamm@gmail.com (D.S.

edeiros), gustavo-pinheiroc@outlook.com (G.P. Correia).

2

g

ttps://doi.org/10.1016/j.micpro.2020.103086

141-9331/© 2020 Elsevier B.V. All rights reserved.
ong life batteries. This work aims to create a wearable computer

ision device for visually impaired persons.

This work presents a design space exploration on a pattern clas-

ifier made of a GLCM (Gray Level Co-occurrence Matrix) combined

ith a SVM (Support Vector Machine) to collaborate with this de-

ice. This combination has proven to be effective for many texture

dentification applications [1–3] .

The entire process was tested on a workstation and on an em-

edded platform, where a final implementation was assessed. The

ain contribution of this work is to evaluate and reduce the mem-

ry required in the classifier system so that it fits into a low

ower microcontroller platform, preserving the accuracy obtained

n workstations with much larger resources.

This paper is organized as follows: Section 2 describes some

f the state-of-the-art-systems that present related works as

ell as different attempts to embed computer vision systems.

ection 3 describes the exploration of this work and results ob-

ained using a workstation. Section 4 shows the results of the clas-

ifier in an embedded platform. Section 5 presents the conclusion

f the paper and discusses the results obtained.

. Related works

The first part of this Section presents other works that investi-

ated embedded computer vision systems, especially those based

https://doi.org/10.1016/j.micpro.2020.103086
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103086&domain=pdf
mailto:elias@ifce.edu.br
mailto:faustos@ppgcc.ifce.edu.br
mailto:lucas.costa@lit.ifce.edu.br
mailto:david.silvamm@gmail.com
mailto:gustavo-pinheiroc@outlook.com
https://doi.org/10.1016/j.micpro.2020.103086

2 E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086

t

d

2

c

a

c

i

(

t

fi

b

a

f

l

b

2

w

fi

d

a

c

P

t

p

a

T

w

a

u

V

w

f

d

t

p

f

p

3

a

i

s

p

3

a

w

w

t

t

i

o

on SVM classifiers and GLCMs as the feature extractor. The second

part of this section (2.2) introduces some works that applied ma-

chine learning to assistive technology as an example of computer

vision to detect textures.

2.1. Embedded computer vision applications

Many researchers have used SVM in various applications, but

few have attempted to embed this classifier. In [4] a method was

proposed to recognize people in aerial images obtained from Small

Unmanned Aerial Vehicles using Pattern Recognition Systems ap-

plied to image recognition. Some machine learning classifiers were

tested, including SVM together with the Histogram of Oriented

Gradients (HOG) as the feature extractor. The embedded platform

for evaluation was a Raspberry Pi 2 Model B v1.1, which is a com-

puter with many resources and demands too much power for a

wearable device. This platform size is very common to validate

embedded computer vision proposals [5,6] . In [7] the same experi-

mental approach was used. However, that work only explored per-

formance aspects, leaving memory usage investigations as an open

question.

The work of [8] presented a study to classify and identify the

diseases of mango leaves for Indian agriculture. The SVM classifier

was implemented in the OpenCV library. The use of a hardware

platform to embed the entire system was left as a future work.

The SVM, along with the GLCM, was used in [3] in order to

implement an indoors navigation system for a mobile robot, using

a topological map. In the application, the entire classification task

was performed by a remote microcomputer, which communicated

with the robot by radio frequency.

Other investigations did not evaluate their proposals in a real

embedded platform or did not consider the costs in the embedded

device.

Several published studies have used a co-occurrence matrix

(CM) for the extraction of features to classify the images. How-

ever, few of them went beyond validation in simulators. In addi-

tion, there were no feasibility studies on this technique combined

with a classifier.

On considering the feature extractor for the classifier, the au-

thors in [9] state that the main disadvantage of using GLCM is that

it requires a long computing time, especially for very large images.

Thus, the author proposed an FPGA-based architecture to calculate

the co-occurrence matrix and extract 6 features. With the same

objective in mind, other works [10–12] have proposed other archi-

tectures, based on FPGA. These solutions converge to the use of

specific hardware in order to reduce computation time, and caus-

ing most of them to suppress some of the GLCM’s features but

without justifying their choices. Most of them did not associate the

GLCM with a classifier, so they did not evaluate the classifier hit

rate.

Starting from a different hypothesis, this research carried out

design space exploration in memory usage and computation time,

and concurrently evaluating the correctness of predictions com-

pared to the reference implementations. Additionally, this work

targeted a wearable device, and therefore needs to reduce cost

and power; so we innovated using a microcontroller-based plat-

form running an SVM classifier for computer vision.

In [13] , a Cortex-M4 microcontroller is also used to perform

image processing. The paper describes the embedded implemen-

tation of a bio-inspired vision system to avoid collisions, using

a previously proposed neural network. The 32-bit micro control

unit used was the STM32F407 that is clocked at 168 MHz and

offers a total static random access memory (SRAM) of 192 KB.

The authors stated that their model is ideal for embedded plat-

forms and their device consumed a total SRAM of 100 KB. They

did many real-world tests to evaluate their micro-robot implemen-
ations. However, they did not evaluate the (eventual) accuracy re-

uction caused by their modifications in the original algorithm.

.2. Proposals to help visually impaired persons

There are many computer vision applications that use pattern

lassification and are suitable for this investigation. In this paper,

n automatic Crosswalk Detection application was chosen.

In the literature, several strategies have been used to detect

rosswalks. In [14] multi-resolution morphological image process-

ng was used to detect pedestrian tracks and traffic lights. Using

640 × 360) pixel images, an accuracy of 98.33% was obtained for

he crosswalks, and 89.47% accuracy for detecting pedestrian traf-

c signals. The algorithms were implemented in a portable device,

ased on an Intel Atom Z3735F working at 1.33 GHz, and reaching

 computation time of 218.1 ms. No memory evaluation was per-

ormed. The author did not use embedded platforms nor machine

earning to detect patterns. Based on the chosen platform, it can

e inferred that the solution uses a lot of power.

Poggi [15] used a CNN (Convolutional Neural Network) with a

-layer MLP (Multi Layer Perceptron) architecture to detect cross-

alks. The device used images captured by a 3D camera and classi-

ed them into 5 different classes: vertical, horizontal, diagonal left,

iagonal right and others (no crosswalks). The proposed method

chieved an accuracy between 88% and 94% for the 5 trained

lasses, with 200ms computing time in a 1.7 GHz Exynos 4412

rime device. This is another high-performance CPU implemen-

ation, which is more focused on the classifier accuracy than on

ower saving.

An SVM classifier using Local binary patterns (LBP), GLCM and

 combination of both as characteristic extractors was used in [16] .

he images were obtained from a satellite and the computation

as performed by a smartphone. The proposed method obtained

n accuracy of 96.6% using LBP, 90.9% using LBP + GLCM and 90.3%

sing GLCM. Other methods using deep learning such as AlexNet,

GG and GoogLeNet are applied in satellite images to detect cross-

alks in [17] , obtaining an average accuracy of 97.11%.

Usually, the investigation with an embedded platform is left for

uture works, or the chosen platforms for validation has ”abun-

ant” computational and energy resources, like smartphones, and

he resources consumed by the device are not evaluated. The

resent investigation is more focused on very restricted plat-

orms that could be easily worn by visually impaired persons, also

roposing strategies for computational resources optimization.

. Explorations on processing time and memory usage

The embedded platforms that offer lower power consumption,

lso have memory and performance restrictions. Therefore, it is

mportant to investigate (and optimize) the amount of those re-

ources consumed by the algorithms targeting a wearable com-

uter vision device.

.1. Database

The image dataset used in this work consists of a set of 600 im-

ges of crosswalks with dimensions of (1280 × 720) pixels. There

ere four classes, with 150 images for each class in the dataset,

hich is publicly available in [18] . The crosswalks images were ob-

ained at various angles, in horizontal and vertical plans. Some of

he crosswalks were faded as can be seen in Fig. 1 . The four classes

n Fig. 1 are defined as: (1) crosswalk on the right, (2) crosswalk

n the left, (3) crosswalk straight ahead, and (4) no crosswalk.

E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086 3

Fig. 1. Examples of classes.

Fig. 2. Image classification steps.

3

c

(

I

d

r

i

m

r

C

d

w

e

l

e

(

t

r

o

w

o

w

w

(

5

R

i

i

d

i

8

s

p

3

r

a

3

s

o

t

a

e

a

s

m

t

i

3

t

e

t

d

r

c

t

.2. Pattern recognition process

Fig. 2 illustrates the flow for a typical image classification pro-

ess. After capturing the image (Step 1) a reduction in its resolution

 Step 2) can be done and then the extraction of the ROI (Region Of

nterest) is performed (Step 3).

In order to reduce the size and eliminate any redundancy of the

ata, features or characteristics are extracted and then used to rep-

esent the image (Step 4). The feature vectors (extracted from the

mage) are used in the training of a pattern classifier [19,20] . The

ethod of feature extraction used in this work consisted of rep-

esenting textures with second order statistics using a Gray Level

o-occurrence Matrix (GLCM) [21] . A Co-occurrence Matrix (CM)

escribes the amount of combinations of gray levels in an image

ith a certain direction and distance between the neighboring pix-

ls. The size of this matrix (N g) is equivalent to the amount of gray

evels considered in the image.

The pattern classification process (Step 5) follows the feature

xtraction Step. For this work an SVM classifier was used. SVMs

Support Vector Machines) are classifiers that are based on the sta-

istical learning theory, which takes into account the structural er-

or minimization, calculated for the training vectors [22] , and not

nly the minimization of the mean squared error (MSE). An SVM

as chosen for the following reasons: it performs well in vari-

us computer vision applications [3,23,24] ; and there are not many

orks, in the literature, related to embedding this classifier.

In order to train the SVM classifier, the image set of each class

as randomly divided into the following proportions: 100 images

around 67%) for the training set and 50 for the test set. Altogether,
0 independent training and test runs were performed using the

BF (Radial Basis Function) kernel , with C and σ detected automat-

cally by the grid-search.

A workstation (hereafter called WS1) was used to perform the

nitial evaluations of the classifier, before the entire process was

eployed onto the embedded platform. The WS1 was an Intel Core

5 - 1.6 GHz, with 256 KB of L2 Cache per Core, 3 MB of L3 Cache,

 GB of RAM - running macOS version 10.13.6, with the openCV

oftware version 2.4.13.2 and in Python language. The classification

rocess on the embedded system is explained in Section 4 .

.3. Computation time exploration

This Section is dedicated to explore properties in the pattern

ecognition process that can influence computation time. Special

ttention is given to the feature extractor.

.3.1. Evaluation of GLCM features

The GLCM [21] [25] [26] provides a set of 24 statistical mea-

ures, which can be extracted from a single image. Table 1 lists all

f these measures.

Initially, all 24 features were extracted from all 600 images of

he crosswalks. Column Feature Set 1 (FS1) in Table 2 presents the

ccuracy of the SVM classifier for each class using all 24 features

xtracted from the images in their original size (1280 × 720). The

ccuracy and standard deviation values come from 50 runs.

Using 24 features gives a good average accuracy, around 91%, as

hown in Table 2 , column FS1. However, considering the goal is to

inimize the size of the target embedded system, it does not seem

o be the best solution. Thus, two other approaches were applied

n reducing the number of features:

• Feature selection based on correlation (CFS).

• Feature computation study.

.3.2. Feature selection based on correlation

CFS (Correlation-based Feature Selection) [27] is an algorithm

hat evaluates the performance of a subset of features by consid-

ring the individual predictive capacity of each feature along with

he degree of redundancy between them. The expectation is to re-

uce the number of features used by the SVM classifier, as well as

educing the computational cost for both: feature extraction and

lassification. Among the 24 feature, the CFS selected 3: Sum En-

ropy, IMC I, Difference Mean.

4 E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086

Table 1

GLCM’s Features.

Reference # Features

Haralick et al. (1973) [21] 14 Angular Second Moment (ASM), Contrast, Correlation, Sum of Squares, Sum Average, Inverse Difference Moment

(IDM), Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy, Information Measures of

Correlation I (IMC I), Information Measures of Correl. II (IMC II), Maximal Correlation Coefficient (MCC).

Soh and Tsatsoulis (1999) [25] 6 Homogeneity, Autocorrelation, Dissimilarity, Cluster Shade, Cluster Prominence, Maximum Probability.

Wang et al. (2010) [26] 4 Sum Mean, Cluster Tendency, Difference Mean, Inertia.

Total 24 -

Table 2

Classifiers Accuracy for Each Feature Set with Original Image Size.

Class

Feature Set

FS1 (24 features) FS2 (3 features) FS3 (10 features)

1 91.54 ± 1.50 91.72 ± 2.02 91.65 ± 1.57

2 93.06 ± 1.62 92.62 ± 1.66 92.77 ± 1.85

3 88.77 ± 2.05 87.27 ± 2.11 89.15 ± 1.83

4 88.47 ± 1.90 88.23 ± 1.89 88.73 ± 1.68

Average 90.46 ± 1.23 89.96 ± 1.39 90.58 ± 1.21

3

t

S

d

a

w

s

s

a

T

e

a

r

c

u

a

w

t

m

b

m

n

a

i

w

u

1

o

l

s

t

i

o

o

s

m

i

o

t

t

M

r

o

w

a

p

T
The accuracy of the classifier using the set of features obtained

by the CFS is shown in Table 2 , column FS2.

Analyzing the results, the mean accuracy of the classifier was

under 90%. Based on the accuracy, the CFS did not performed very

well for this pattern recognition application. However, the reduc-

tion in the feature vectors will affect the computation time posi-

tively.

3.3.3. Feature selection based on calculation complexity

The order of growth of the running time of an algorithm al-

lows the relative performance of alternative algorithms to be com-

pared [28] . The complexity study is concerned with how the run-

ning time of an algorithm increases with the size of the input n .

The notations that are often used to describe the processing time

of an algorithm are called asymptotic notations. An algorithm that

is asymptotically more efficient will be the best choice for all but

very small inputs [28] .

The asymptotic notation � was used to describe the running

time of the algorithms of all 24 features, considering the worst

case performances. The value of the input n is the size of the Co-

occurrence Matrix, and is necessary to go through the entire ma-

trix to extract a feature.

In the Table 3 all 24 features are presented according to its time

complexity, based on the equations from [29] . Analyzing all values

for the feature calculations, the lowest time complexity found was

�(n 2).

Due to its low complexity, the 10 features in the �(n 2) group

were selected for a new classifier accuracy analysis and named FS3

in Table 2 . The accuracy results for the FS3 are nearly the same as

those obtained by FS1. The accuracy of FS3 is close to FS1 because

the features that were eliminated offered a negligible contribution

to the classification. Moreover, those eliminated features tend to

confuse the classifier.

However, the main advantage of the FS3 is in its smaller time

usage. Note that some features selected by the CFS, like IMC I , have

a computation time of �(2 n 2), greater than �(n 2), which can be

very time-consuming in a limited resources platform.

3.4. Memory usage exploration

This Section is dedicated to exploring properties in the pattern

recognition process that can impact memory consumption. Three

aspects are considered: The size of the image to be classified, the

number of gray levels (a GLCM property), and the space complex-

ity of the feature extraction.
.4.1. Input image size exploration

In order to verify the impact that the image size causes on

he classifier accuracy, tests were done with different image sizes.

tarting from the original image size (1280 × 720), 99 new

atasets were created, scaling down to 12 × 7.

The decimation technique was used to resize the original im-

ges, which produced an approximation of the sequence that

ould have been obtained by sampling the signal at a lower den-

ity [30] . In this work, a signal is equivalent to an image and the

amples correspond to the image pixels.

To illustrate the image decimation, an input image I (6 × 8),

fter a decimation of M = 3 , will result in an image J (2 × 3).

he higher the value of M , the smaller the resultant image. In this

xample, only lines 1 and 4 of the input appear in the output im-

ge, as well as columns 1, 4, and 7. For the experiments made, M

anges from 1 to 100.

Fig. 3 presents examples of the crosswalk images, belonging to

lass 3 (crosswalk ahead), resized with the decimation technique.

Fig. 4 shows the classifier accuracy for different values of M ,

sing only the FS3 set of features. As the image size decreases to

round M = 20 (64 × 24 pixels), the accuracy decreases smoothly,

ith no significant losses in quality. However, the results show

hat using smaller size images (greater M) leads the classifier to

ake many mistakes. The images passed through a low-pass filter

efore decimation, although images from cameras usually have a

inimum amount of high frequencies, and the filter does not sig-

ificantly affect the accuracy. The experiment shown in Fig. 4 was

lso done without the filter, with almost the same results.

Table 4 shows the accuracy for some resized images, always us-

ng the FS3 features. To produce Table 4 , filtered images were used,

hile in Table 2 the images were not filtered. It is possible to eval-

ate the filtering effect on accuracy by comparing the results for

280 × 720 images in Table 4 with the results for the same res-

lution in Table 2 (FS3). The only difference between them is the

ow-pass filter. It can be seen that the difference is negligible, con-

idering the standard deviation.

The results from Table 4 and Fig. 4 indicate that image resolu-

ion impacts the classifier accuracy but only when the image size

s significantly reduced does it seriously degrade the accuracy. This

ccurs because the feature extractor adopted here (GLCM) is based

n textures, and a small (or medium) image-size reduction pre-

erves its texture.

In order to offer a significant reduction in memory usage while

aintaining good accuracy, a criterion was established to select the

mage size. Fig. 5 illustrates the adopted approach. First of all, in

rder to select the acceptable results from each sample rate, the

op 25% (third quartile) of the accuracy results are taken. In Fig. 5 ,

his range is delimited by the dashes while the point indicates the

edian. According to Fig. 4 , higher image-size implies better accu-

acy. So, a quality range is set up, based on the worst accuracy

f the three best results. This is shown in Fig. 5 by a red line,

hich is called the poor-quality line. Starting from the larger im-

ges, the smaller image-size to be accepted will be the one that

recedes the first to have its median below the poor-quality line.

his is a very conservative strategy, but the intention is to preserve

E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086 5

Fig. 3. Examples of a resized image from class 3.

Fig. 4. SVM classifier accuracy for resized images using 1 ≤ M ≤ 100.

Fig. 5. Sampling deviation of the accuracy for some values of M.

6 E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086

Table 3

List of Features Grouped by Time Complexity.

Running Time Features

�(n 2) ASM, Contrast, IDM, Entropy, Homogeneity, Sum Mean, Maximum Probability, Dissimilarity, Difference Mean, Autocorrelation.

�(n 2 + n) Correlation, Inertia.

�(n 2 + 2 n) Sum Average, Sum Entropy, Difference Variance, Difference Entropy.

�(n 2 + 4 n − 2) Sum Variance.

�(2 n 2) Sum of Squares, IMC I,IMC II, MCC, Cluster Tendency, Cluster Shade, Cluster Prominence.

Table 4

Classifier Accuracy for Some Resized Images.

Class M = 1 (1280 × 720) M = 17 (76 × 43) M = 27 (48 × 27)

1 91.63 ± 1.81 91.15 ± 1.71 90.93 ± 1.77

2 92.89 ± 1.45 92.76 ± 1.68 88.86 ± 2.10

3 88.34 ± 1.59 88.36 ± 1.67 84.38 ± 2.35

4 88.38 ± 1.87 88.21 ± 1.95 87.47 ± 1.75

Average 90.31 ± 1.11 90.12 ± 1.18 87.91 ± 1.33

Fig. 6. Classifier accuracy for resized Co-occurrence Matrix.

r

d

N

c

c

t

a

(

l

t

o

s

s

w

p

d

p

o

T

o

w

3

s

m

t

c

o

a
the quality of the classifier before reducing computational resource

usage. For this particular dataset, the chosen sample rate (M) is

17, leading to a resolution of (76 × 43). Fig. 4 shows that there

is a ”better” sample rate (21) that performs very similar to that

of 17. However, many of its results are under the red line, which

does not happen with M = 17. Moreover, keeping the tendency of

Fig. 5 in mind, it is reasonable to assume that a higher image res-

olution will lead to a better classifier under the present operating

conditions.

A reduction in image size influences both memory and comput-

ing time. So, in order to compare the computational effort to cal-

culate the three feature sets, measurements of time spent for vari-

ous image sizes were performed on the WS1 workstation and pre-

sented in Table 5 . A hundred time-measurements were made for

the whole process and the average was taken. According to Fig. 2 ,

‘CM Matrix Creation’ and ‘Feature Extraction’ are part of Step 4 and

this includes a normalization. Steps 1 to 3 are not considered for

time measurements.

Table 5 points out the following: (1) Creating the CM is very de-

pendent on the size of the image. Therefore, there is a significant

gain of time when using smaller images. (2) Feature extraction is

independent of the image size, and only depends on the number

of features. The results confirm the important reduction in time

provided by the FS3 set. (3) The time spent in classification (SVM)

is much less important, therefore it is justifiable to invest the opti-

mization effort s on CM creation (image size) and feature extraction

(based on complexity).

A slight variation in SVM computation time can occur as the

resolution changes. Depending on the features, the SVM training

process is forced to select a larger number of Support Vectors to

be able to classify correctly. Therefore, the classifier might need

more computation time.

3.4.2. Co-occurrence matrix evaluation

All the experiments performed so far have used a CM that con-

siders 256 levels of gray (N g), which are found in 8-bit resolution

images. However, knowing that the amount of gray levels corre-

sponds to the size of this matrix, a new experiment was proposed

to compare results for different values of N g . In this study, the CM

was reduced, based on the number of bits, resulting in matrices

proportional to the image resolution (number of bits or N). For ex-

ample, for N = 8 and N = 7 , the size of the CM will result, respec-

tively, in 256 X 256 and 128 X 128.

Another classifier accuracy evaluation was performed but this

time changing the number of gray levels. The graph in Fig. 6

presents the classifier accuracies for the following configuration:
esized images with M = 17(76 × 43) , FS3 feature set, and CM re-

uction using N = { 8 , 7 , 6 , 5 , 4 } , 50 training runs for each value of

 .

The results in Fig. 6 indicate that a moderated reduction in the

o-occurrence matrix does not cause any significant change to the

lassifier accuracy. Therefore, this new approach creates an oppor-

unity for a strong reduction in the memory footprint. With this

pplication, it is possible to use CM with dimensions of 6 4 × 6 4

 N = 6), for example, maintaining an average accuracy close to 90%.

The size of the Co-occurrence Matrix affects the time to calcu-

ate the features, as shown before in Table 3 . Consequently, an ex-

ra gain in time is expected, besides the reduction in memory. In

rder to demonstrate that, Table 6 presents measurements of time

pent considering some different gray levels and using the image

ize 76 × 43 (M = 17). The evaluation was executed on the WS1

orkstation, taking the average time of 100 measurements. As ex-

ected, the time to calculate the features was benefited by the re-

uction of N g . The CM creation time was not affected since it de-

ends only on the input image size, where the CM is just the result

f the process.

An image size of 76 × 43, and feature set FS2 (as shown in

able 5) could be used and this would result in a computing time

f 17.7 seconds. Using the proposed approach (N = 6), the time

ould be 33.9 ms; which is a reduction of 99.8%.

.4.3. Space complexity for feature extraction

Following that same approach presented in Section 3.3.3 , a

tudy of spatial complexity was made, in order to evaluate the

emory occupancy for each feature calculation. Table 7 presents

he results of the study for each feature calculation, grouped in

rescent order, where n is the co-occurrence matrix size. The group

f features that has a spatial complexity �(1), does not consume

ny extra memory (besides the co-occurrence matrix size). Feature

E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086 7

Table 5

Execution Time as a function of the image size and the Feature set, measured on the WS1 (in

milliseconds).

Feature Set Step M = 1 (1280x720) M = 17 (76x43) M = 27 (48x27)

FS1 CM Matrix Creation 1,313.955 5.393 2.184

Feature Extraction 21,276.455 22,265.318 21,282.924

Classification (SVM) 0.020 0.020 0.019

- Total 22,590.431 22,270.731 21,285.129

FS2 CM Matrix Creation 1,376.806 5.067 2.183

Feature Extraction 17,713.619 17,718.529 17,712.199

Classification (SVM) 0.018 0.019 0.035

- Total 19,090.444 17,723.616 17,714.419

FS3 CM Matrix Creation 1,274.454 4.872 2.268

Feature Extraction 452.870 454.451 452.828

Classification (SVM) 0.020 0.019 0.019

- Total 1,727.345 459.343 454.953

Table 6

Execution Time as a function of the CM size, measured on the WS1 (in milliseconds) using FS3.

Step 8 bits (256 × 256) 7 bits (128 × 128) 6 bits (64 × 64) 5 bits (32 × 32) 4 bits (16 × 16)

CM Creation 4.864 4.565 4.568 4.913 4.832

Feature Extraction 454.687 113.796 29.367 7.876 1.991

Classification (SVM) 0.019 0.019 0.023 0.023 0.021

Total (ms) 459.571 118.381 33.959 12.814 6.836

Table 7

List of features Grouped by Space Complexity.

Memory Cost Features

�(1) ASM, Contrast, Sum of Squares, IDM, Entropy, Homogeneity, Sum Mean, Maximum Probability, Cluster Tendency, Cluster Shade, Cluster

Prominence, Dissimilarity, Difference Mean, Autocorrelation, Inertia.

�(n) Difference Variance, Difference Entropy.

�(2 n − 1) Sum Average, Sum Entropy.

�(2 n) Correlation, Sum Variance, IMC I, IMC II, MCC.

e

s

t

w

c

4

s

a

e

4

t

s

c

t

e

M

c

(

t

t

s

t

4

a

b

o

n

i

p

e

p

2

O

4

S

(

t

a

s

t

b

p

4

w

o

c

p
xtractors that have a spatial complexity �(n) create an array of

ize (n) and so on.

Tables 3 and 7 demonstrate that the group containing the fea-

ures with time complexity �(n 2) is included in the set of features

ith spatial complexity �(1). Thus, the 10 features with shorter

omputing time (FS3) also have the smaller spatial complexity.

. Classifier evaluation on a 32-bit microcontroller platform

This Section describes the implementation of the image clas-

ifier into an embedded platform. Measurements of performance

nd memory footprint are presented and discussed as well as the

mbedded classifier accuracy.

.1. Description of prototyping and testing platform

Since this is going to be a wearable application, it is important

o evaluate the final results considering a low energy platform for

mall sized, low weight devices. Therefore, a limited resources mi-

rocontroller was chosen to embed this computer vision applica-

ion.

A Tiva C Series TM4C123G Launchpad board was used as the

mbedded platform, which uses TM4C123GH6PM, an ARM Cortex-

4 based microcontroller. The TM4C123GH6PM has an 80 MHz

lock speed, 256 KB Flash (program memory) and 32 KB SRAM

data memory). Additionally, the microcontroller power consump-

ion is 148 mW with all peripherals active, running at 80 MHz. Al-

hough, it is suitable for wearable devices, some additional efforts

hould be made for better results.

The Energia 1.6.10E18 IDE was adopted to develop the applica-

ion for the board, using C++ Language.
.2. Replicating the pattern classifier on the microcontroller

The OpenCV was chosen as the tool to train the SVM due to its

bundant documentation. The model was generated using the li-

rary version 2.4.13.2. The SVM classifier was trained and validated

n the WS1 workstation using the following parameters: RBF ker-

el with C = 12 . 5 and σ = 0 . 5 , FS3 set of features, 64 gray levels,

mage resolution of 76 × 43. A total of 50 training runs were

erformed.

The Co-occurrence Matrix (CM) creation and the algorithms to

xtract the 10 features were implemented in C++ based on the ex-

ressions provided in the literature [21,25,26,29] .

Porting the SVM classifier to the embedded platform followed

 steps: (1) Exporting the model generated by the training (in

penCV), and (2) Inserting the model in the embedded classifier.

.2.1. Exporting the OpenCV model generated by the training

The OpenCV offers a function that generates a text file with the

VM model. The file contains: the kernel type, the sigma value

called gamma), and a list containing the decision functions with

heir respective bias, alphas, and support vectors. The OpenCV SVM

dopts the one-vs-one approach [31] that generates 6 binary clas-

ifiers (decision functions) for a 4-class problem, plus a voting sys-

em. The classifier with the best average accuracy was chosen to

e embedded, which required 245 support vectors in the training

rocess.

.2.2. Inserting the model in the embedded classifier

The SVM classification code for the embedded platform was

ritten in C++, based on the OpenCV references and source code

n GitHub [32] . No optimization was introduced in this part. As

an be seen in the previous results, such as in Table 6 , the com-

utation time of the SVM has a low impact on the total time. The

8 E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086

Table 8

Confusion matrix of the embedded im-

plementation.

Class 1 2 3 4

1 119 2 19 10

2 0 126 12 12

3 14 9 114 13

4 10 12 9 119

Table 9

Performance of the embedded SVM

classifier.

Class

Metrics

Acc(%) F 1 − Score

1 90.83 81.23

2 92.17 84.28

3 87.33 75.00

4 89.00 78.29

Average 89.83 79.70

Table 10

Time consumed (in milliseconds) on the em-

bedded platform.

CM Creation 0.99 0.31%

Feature Extraction 306.40 94.60%

Classification (SVM) 16.48 5.09%

Total 323.87 100.00%

Table 11

Memory Usage (in bytes) on the embedded platform.

Flash Decision Functions (6) 4,560 17.66%

Support Vectors (245) 9,800 37.94%

Code 11,468 44.40%

Total - 25,828 100.00%

RAM Image size (76 × 43) 3,268 15.72%

Co-occurrence Matrix (64 × 64) 16,384 78.83%

Features (10) 40 0.19%

Other Variables 1,092 5.26%

Total - 20,784 100.00%

h

w

e

p

w

t

t

T

t

a

W

t

m

d

t

g

t

s

v

t

p

f

s

s

p

o

s

t

d

p

s

q

S

e

p

S

T

b

H

model generated by the OpenCV is included in the Energia project

via a header file and is set to be implemented in the read-only

memory (Flash).

4.3. Evaluating the embedded classifier

The validation of the pattern classification process was made by

sending images to the board memory from a workstation through

serial communications.

A script (on the workstation) sends images to the board that

classifies them and sends the results back. The entire image set

was sent to the board for evaluation, one by one. The class pre-

dicted by SVM as well as the features calculated by the board were

captured on a file in the workstation. Knowing the expected class

(provided by the OpenCV execution), the script compares it to the

board output, counting a hit if the outputs match. The tests in-

dicated 99.67% correctness; however, 2 samples were misclassified,

compared to the workstation results and this was associated to the

numerical precision of the microcontroller.

Table 8 shows the confusion matrix obtained by the embed-

ded classifier when exposed to the whole data set. It is almost the

same result as obtained by the WS1.

The performance of the embedded classifier can also be mea-

sured by its accuracy. Table 9 presents accuracy and F 1 − Score for

each class and the average. This classifier was evaluated using the

whole dataset, which also contains some samples used in its train-

ing process. Despite this, the results are slightly worse than those

in Table 4 . As recommended in Section 3.4.2 , the embedded ver-

sion adopted a 64 × 64 co-occurrence matrix, while the experi-

ment in Table 4 used a 256 × 256 CM. This information reduction

can cause a small reduction in the accuracy of the classifier. Addi-

tionally, the data precision of the microcontroller is less than the

workstation, contributing to some classifier errors.

The GLCM features calculated using the embedded system were

also compared to the expected ones, obtained from the worksta-

tion. The maximum difference was 1.8150 ×10 −4 in absolute val-

ues, which is an acceptable difference, knowing the features are

normalized to the range 0 to 1.

In order to measure computation time, the classifier was made

to run continuously getting images from the serial port and classi-

fying them repeatedly. A GPIO pin is set to high at the beginning

of the SVM computation and set to low at the end. Likewise, other

GPIO pins are enabled for the CM (co-occurrence matrix) creation

and the Feature Extraction. An oscilloscope (Tektronix MDO4034)

captures the signals and calculates the average time spent at a
igh level for 100 repetitions. The results are presented in Table 10 ,

here the last column on the right represents the percentage of

ach process.

Table 10 shows that the feature extraction was the most ex-

ensive operation, taking up more than 94% of the total time. This

as known from the design space exploration steps explained in

he previous Sections. The times for data retrieval and reporting of

he results via the serial port were not included in the measures.

he time to generate CM includes the ROI calculation, which uses a

hreshold algorithm that can easily be performed in the same loop.

The time to execute the low-pass filter in a (1280 × 720) im-

ge was also measured in the embedded platform, taking 0.94 ms.

hen it is necessary to use a filter before the image decimation

here is no significant impact on the total computation time.

The Tiva C board, as many other microcontroller systems, has

emory limitations, especially data memory. So, the immutable

ata must be placed in the FLASH memory, leaving the RAM to

he mutable.

Table 11 details memory usage, extracted from the map file,

enerated by the linker. The last column on the right represents

he percentage for each memory usage.

The SVM decision functions are stored in a 6-elements-array

ince 6 functions are required for a 4-class problem using one-

s-one strategy. Each array element (a struct) contains 4 fields: (i)

he bias for the decision function (1 float); (ii) the number of sup-

ort vectors needed for that function (1 integer); (iii) the indexes

or each support vector used (94 integers); (iv) the alphas for each

upport vector in that function (94 floats). Note that not all deci-

ion functions use 94 support vectors, but the struct must be ca-

able of storing the maximum number of indexes needed for one

f them, which is 94 for this classifier. That is also the reason for

toring the support vectors indexes for each decision function in

he struct itself.

Table 11 demonstrates that the resizing of the CM plays a fun-

amental role to make this application feasible in a microcontroller

latform because CM used 79% of the RAM. The final reduction

urpasses 92% since the original CM size (256 × 256) would re-

uire 266,544 bytes to hold the application data.

The number of Support Vectors could be an issue to embed

VM classifiers, impacting memory usage and performance. How-

ver, they can be allocated in flash memory, which usually has

lenty of space available. On the other hand, the time spent by the

VM decision process is not very important, as shown in Table 10 .

he Decision Functions also require a lot of memory for a non-

inary classifier, especially when a one-vs-one approach is used.

owever, again, these data go to the flash memory.

E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086 9

Table 12

Estimated cost and power consumption for some embedded platforms.

Cortex-M RaspBerry FPGA

F407 TM4C Pi 3 Spartan7 Virtex 6/7

Power (mW) 175 180 800 - 70 to 950

Cost (USD) 19.9 13.5 35.0 99.0 1,390.00

p

t

c

A

i

s

p

c

i

v

m

e

[

h

F

i

p

p

5

a

(

M

t

i

b

d

p

f

m

t

f

t

o

M

i

f

p

c

t

t

g

p

a

m

×

i

t

a

p

t

i

b

(

n

a

f

v

s

a

d

s

c

p

m

a

l

D

e

c

o

A

a

S

f

R

Finally, a comparison was made among the different platforms

roposed in the literature for embedded computer vision applica-

ions based on GLCM. Table 12 presents power consumption and

ost for three different platforms, FPGA, Raspberry Pi (ARM Cortex-

), and ARM Cortex-M. Power estimation for the processors is eas-

ly extracted from their datasheets. On the other hand, power con-

umption in FPGA is highly dependent on the implementation. Ex-

erimental studies [33] for the Xilinx Virtex-II Pro-XC2VP30 indi-

ate values from 70 mW to 950 mW. Those results depend on the

mplemented logic and how it was described.

Below, Table 12 presents general measurements in order to pro-

ide a simple comparison. Cortex-M is a microcontroller and its

ain characteristics are low power and low cost, targeting energy-

fficient embedded devices. F407 is the microcontroller used in

13] , although they do not use GLCM. The Cortex-A family provides

igh-performance processors, most of them being multi-core. The

PGA platforms are more focused on high-performance hardware

mplementations. They can provide a high number of operations

er watt [34] , and are more useful when high performance com-

utation is required.

. Conclusions

This work carried out a design space exploration for an im-

ge classification system. The implementation combines a GLCM

Gray Level Co-occurrence Matrix) and an SVM (Support Vector

achine), enabling the embedding of a computer vision applica-

ion into a minimum resource platform. Considering that memory

s the most limited resource in such platforms, the main contri-

ution of this work is the implementation and evaluation of a re-

uced computational time and reduced memory usage of a com-

uter vision system that fits into a low-power microcontroller plat-

orm, preserving the accuracy obtained in workstations which have

uch greater resources.

An empirical study was conducted using crosswalk detection,

argeting a wearable application for the visually impaired.

A process to move an SVM predictor to a microcontroller plat-

orm is described, and ways to embed machine learning applica-

ions are discussed.

Two main qualities were explored to evaluate the consumption

f computational resources: Memory usage and Execution time.

emory investigations showed results in 3 characteristics: Input

mage size, Number of gray levels, and Space complexity of the

eature calculation. The effect of reducing the memory on the com-

utation time was also evaluated.

The investigation focused on memory usage; however, the three

haracteristics investigated also resulted in benefits to the execu-

ion time, as stated in the results.

The experimental results indicate that it is not necessary to use

he largest resolution available; a smaller resolution can still obtain

ood accuracy. A procedure was proposed to select that resolution.

The feature selection criteria based on time complexity pro-

osed in [7] proved to be efficient not only in execution time but

lso in memory usage.

The number of gray levels (N g) significantly impacted the GLCM

emory usage due the creation of an intermediate matrix (size N g

N g). The reduction of this matrix plays an essential role in mak-
ng an application feasible in a microcontroller because it is usually

he largest data structure to be deployed. The benefits include cost

nd power usage.

The main effort in optimization was in the feature extraction

rocess, based on GLCM. In fact, the results showed that 94% of

he classification time is spent in that process. The SVM classifier

s complex, but the feature extraction is far more so.

The SVM memory footprint depends on two aspects: the num-

er of Support Vectors (SV) and the number of Decision Functions

DF), both defined by the training process. Previous works usually

eglected the latter because SVM is a binary classifier. However,

pplications with more classes tend to use more data for decision

unctions.

The memory used by the SVM (SV and DF) should be non-

olatile (read-only) because the results deployed in the embedded

ystem are generated by the training; and that data is not modified

t runtime. The only exception is the feature vector used as input

ata. On the other hand, the memory required by the GLCM is ba-

ically RAM: the input image and Co-occurrence Matrix, beside the

alculated features.

Wearable applications must be implemented on low-power

latforms, and computational vision tends to become more and

ore common in such applications. This paper offers tips on how

 computer vision application can be deployed on low-power and

ow-cost platforms.

eclaration of Competing Interest

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signifi-

ant financial support for this work that could have influenced its

utcome.

cknowledgment

The authors would like to thank the sponsorship from FUNCAP

nd CAPES via grant no. 05/2014 FUNCAP/CAPES.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.micpro.2020.103086 .

eferences

[1] M. Talibi Alaoui , A. Sbihi , Texture classification based on co-occurrence matrix
and neuro-morphological approach, in: A. Petrosino (Ed.), Image Analysis and

Processing – ICIAP 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 510–521 .

[2] A. Dasgupta, S. Grimaldi, R. Ramsankaran, J.P. Walker, Optimized glcm-based
texture features for improved sar-based flood mapping, in: 2017 IEEE Interna-

tional Geoscience and Remote Sensing Symposium (IGARSS), 2017, pp. 3258–

3261, doi: 10.1109/IGARSS.2017.8127692 .
[3] L.B. Marinho, J.S. Almeida, J.W.M. Souza, V.H.C. Albuquerque, P.P.R. Filho, A

novel mobile robot localization approach based on topological maps using
classification with reject option in omnidirectional images, Expert Syst. Appl.

72 (2017) 1–17, doi: 10.1016/j.eswa.2016.12.007 .
[4] D.C.D. Oliveira, M.A. Wehrmeister, Towards real-time people recognition on

aerial imagery using convolutional neural networks, in: 2016 IEEE 19th Inter-

national Symposium on Real-Time Distributed Computing (ISORC), IEEE, York,
UK, 2016, pp. 27–34, doi: 10.1109/ISORC.2016.14 .

[5] R. Azarmehr, R. Laganiere, W.-S. Lee, C. Xu, D. Laroche, Real-time embedded
age and gender classification in unconstrained video, in: 2015 IEEE Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2015,
pp. 56–64, doi: 10.1109/cvprw.2015.7301367 .

[6] B. Reddy, Y.-H. Kim, S. Yun, C. Seo, J. Jang, Real-time driver drowsiness detec-
tion for embedded system using model compression of deep neural networks,

in: 2017 IEEE Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), IEEE, 2017, pp. 438–445, doi: 10.1109/cvprw.2017.59 .
[7] F. Sampaio, L.C. da Silva, P.P.R. Filho, E.T. da Silva Jr, Reducing computational

costs of an embedded classifier to determine leather quality, in: 2017 VII
Brazilian Symposium on Computing Systems Engineering (SBESC), IEEE, 2017,

pp. 211–216, doi: 10.1109/sbesc.2017.36 .

https://doi.org/10.13039/501100002322
https://doi.org/10.1016/j.micpro.2020.103086
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0001
https://doi.org/10.1109/IGARSS.2017.8127692
https://doi.org/10.1016/j.eswa.2016.12.007
https://doi.org/10.1109/ISORC.2016.14
https://doi.org/10.1109/cvprw.2015.7301367
https://doi.org/10.1109/cvprw.2017.59
https://doi.org/10.1109/sbesc.2017.36

10 E.T. Silva Jr, F. Sampaio and L.C. da Silva et al. / Microprocessors and Microsystems 76 (2020) 103086

[

G

S

p

[8] J. Sethupathy , S. Veni , Opencv based disease identification of mango leaves, Int.
J. Eng. Technol.Sci. Res. - IJETSR 8 (5) (2016) 1990–1998 .

[9] L. Siéler, C. Tanougast, A. Bouridane, A scalable and embedded FPGA architec-
ture for efficient computation of grey level co-occurrence matrices and har-

alick textures features, Microprocess. Microsyst. 34 (1) (2010) 14–24, doi: 10.
1016/j.micpro.20 09.11.0 01 .

[10] M. Tahir, A. Bouridane, F. Kurugollu, A. Amira, Accelerating the computation
of GLCM and haralick texture features on reconfigurable hardware, in: 2004

International Conference on Image Processing. ICIP ‘04., IEEE, 2004, pp. 2857–

2860Vol. 5, doi: 10.1109/icip.2004.1421708 .
[11] S. López-Estrada, R. Cumplido, Decision tree based FPGA-architecture for tex-

ture sea state classification, in: 2006 IEEE International Conference on Re-
configurable Computing and FPGA’s (ReConFig 2006), IEEE, 2006, pp. 1–7,

doi: 10.1109/RECONF.2006.307770 .
[12] D. Iakovidis, D. Maroulis, D. Bariamis, FPGA architecture for fast parallel com-

putation of co-occurrence matrices, Microprocess. Microsyst. 31 (2) (2007)

160–165, doi: 10.1016/j.micpro.2006.02.013 .
[13] C. Hu, F. Arvin, C. Xiong, S. Yue, Bio-inspired embedded vision system for

autonomous micro-robots: the lgmd case, IEEE Trans. Cognit. Dev.Syst. 9 (3)
(2017) 241–254, doi: 10.1109/TCDS.2016.2574624 .

[14] K. Romic, I. Galic, H. Leventic, K. Nenadic, Real-time multiresolution crosswalk
detection with walk light recognition for the blind, Adv. Electr. Comput. Eng.

18 (1) (2018) 11–20, doi: 10.4316/aece.2018.01002 .

[15] M. Poggi, L. Nanni, S. Mattoccia, Crosswalk recognition through point-cloud
processing and deep-learning suited to a wearable mobility aid for the visu-

ally impaired, in: New Trends in Image Analysis and Processing – ICIAP 2015
Workshops, Springer International Publishing, 2015, pp. 282–289, doi: 10.1007/

978- 3- 319- 23222- 5 _ 35 .
[16] M.C. Ghilardi, J.J. Junior, I. Manssour, Crosswalk localization from low resolu-

tion satellite images to assist visually impaired people, IEEE Comput. Graph.

Appl. 38 (1) (2018) 30–46, doi: 10.1109/mcg.2016.50 .
[17] R.F. Berriel, A.T. Lopes, A.F. de Souza, T. Oliveira-Santos, Deep learning-based

large-scale automatic satellite crosswalk classification, IEEE Geosci. Remote
Sens. Lett. 14 (9) (2017) 1513–1517, doi: 10.1109/lgrs.2017.2719863 .

[18] D.S. Medeiros, crosswalk-dataset, 2019, doi: 10.34740/kaggle/dsv/846700 .
[19] C.M. Bishop , Pattern Recognition and Machine Learning, Information Science

and Statistics, Springer-Verlag, New York, 2006 .

[20] G. Sinha , B.C. Patel , Medical Image Processing: Concepts and Applications, PHI
Learning Private Limited, Delhi, 2014 .

[21] R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classifi-
cation, IEEE Trans. Syst. Man Cybern. SMC-3 (6) (1973) 610–621, doi: 10.1109/

tsmc.1973.4309314 .
[22] C. Cortes , V. Vapnik , Support-vector networks, Mach. Learn. 20 (3) (1995)

273–297 .

[23] W.P. Amorim , H. Pistori , M.A.C. Jacinto , A comparative analysis of attribute re-
duction algorithms applied to wet-blue leather defects classification, Brazilian

Symp. Comput. Graph. Image Process. (2009) .
[24] C. Lin , A support vector machine embedded weed identification system, Uni-

versity of Illinois at Urbana-Champaign, 2009 Master thesis .
[25] L.-K. Soh, C. Tsatsoulis, Texture analysis of SAR sea ice imagery using gray level

co-occurrence matrices, IEEE Trans. Geosci. Remote Sens. 37 (2) (1999) 780–
795, doi: 10.1109/36.752194 .

[26] H. Wang, X.-H. Guo, Z.-W. Jia, H.-K. Li, Z.-G. Liang, K.-C. Li, Q. He, Multilevel

binomial logistic prediction model for malignant pulmonary nodules based on
texture features of CT image, Eur. J. Radiol. 74 (1) (2010) 124–129, doi: 10.1016/

j.ejrad.2009.01.024 .
[27] M.A. Hall , Correlation-based Feature Subset Selection for Machine Learning,

University of Waikato, Hamilton, New Zealand, 1998 Ph.D. thesis .
[28] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , Introduction to Algorithms, 3,

The MIT Press Cambridge, Massachusetts, London, England, 2009 .

[29] dGB Earth Sciences, Texture directional: a multi-trace attribute that returns
textural information based on a statistical texture classification, 2015.

[30] R.G. Lyons , Understanding Digital Signal Processing, third, Prentice-Hall, Nova
Jersey, 2010 .

[31] K.-B. Duan, S.S. Keerthi, Which is the best multiclass SVM method? an em-
pirical study, in: Multiple Classifier Systems, Springer Berlin Heidelberg, 2005,

pp. 278–285, doi: 10.1007/114 946 83 _ 28 .
32] G. Bradski , The OpenCV library, Dr. Dobb’s J. Softw. Tools (20 0 0) .
[33] D. Meidanis, K. Georgopoulos, I. Papaefstathiou, Fpga power consumption mea-

surements and estimations under different implementation parameters, in:
2011 International Conference on Field-Programmable Technology, 2011, pp. 1–

6, doi: 10.1109/FPT.2011.6132694 .
[34] P. Marwedel, Embedded System Design, second, Springer-Verlag, Berlin, Hei-

delberg, 2011, doi: 10.1007/978- 94- 007- 0257- 8 .

Elias Teodoro da Silva Junior received the BS degree in

Electrical Engineering (Federal University of Ceará, Brazil),
in 1991, Msc Degree in Electrical Engineering (Federal

University of Sta. Catarina, Brazil), in 1994 and the Ph.D
Degree in Computer Engineering (Federal University of

Rio Grande do Sul, Brazil), in 2008. Currently, he is a Pro-

fessor in the Computer Science Department, at Federal
Institute of Education, Science and Technology of Ceará,

Brazil. His research interests include embedded systems,
machine learning and digital signal processing applica-

tions, and Internet of Things.

Fausto Sampaio received the Master’s degree (2017) and
Bachelor’s degree (2014) in Computer Science at Federal

Institute of Education, Science and Technology of Ceará.
He has technical courses in Software Development (2007),

Industrial Automation (2009) and Informatics (2010) at

Federal Institute of Education, Science and Technology of
Ceará. He is currently Systems Analyst at Federal Uni-

versity of Ceará. He has experience in Computer Science,
with emphasis on Embedded Systems and Software Engi-

neering, working mainly on the following topics: micro-
controllers, robotics, pattern recognition, computer vision,

system development and modeling.

Lucas Costa da Silva received the Bachelor’s degree

(2018) in Computer Engineering at Federal Institute of Ed-
ucation, Science and Technology of Ceará. He has tech-

nical courses in Software Development (2011) at Profes-

sional School Luiza de Teodoro Vieira. He is currently an
M.Sc. candidate in Computer Science at Federal Institute

of Education, Science and Technology of Ceará. His cur-
rent research interests include Embedded Systems, IoT, In-

telligent Computing, Neural Networks, Computer Vision
and pattern recognition.

David Silva Medeiros has Bachelor’s degree in Computer
Engineering (2018) in Federal Institute of Education, Sci-

ence and Technology of Ceará. He is currently an M.Sc.

candidate in Computer Science at Federal Institute of Ed-
ucation, Science and Technology of Ceará. He is interested

in research in the areas of Embedded Systems, Compu-
tational Vision, Computational Intelligence and Pattern

Recognition.

ustavo Pinheiro Correia is now a college student at Federal Institute of Education,
cience and Technology of Ceará, Brazil. His main research interest is digital signal

rocessing.

http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0008
https://doi.org/10.1016/j.micpro.2009.11.001
https://doi.org/10.1109/icip.2004.1421708
https://doi.org/10.1109/RECONF.2006.307770
https://doi.org/10.1016/j.micpro.2006.02.013
https://doi.org/10.1109/TCDS.2016.2574624
https://doi.org/10.4316/aece.2018.01002
https://doi.org/10.1007/978-3-319-23222-5_35
https://doi.org/10.1109/mcg.2016.50
https://doi.org/10.1109/lgrs.2017.2719863
https://doi.org/10.34740/kaggle/dsv/846700
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0018
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0018
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0019
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0019
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0019
https://doi.org/10.1109/tsmc.1973.4309314
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0021
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0021
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0021
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0022
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0022
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0022
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0022
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0023
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0023
https://doi.org/10.1109/36.752194
https://doi.org/10.1016/j.ejrad.2009.01.024
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0028
https://doi.org/10.1007/11494683_28
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30408-9/sbref0030
https://doi.org/10.1109/FPT.2011.6132694
https://doi.org/10.1007/978-94-007-0257-8

	A method for embedding a computer vision application into a wearable device
	1 Introduction
	2 Related works
	2.1 Embedded computer vision applications
	2.2 Proposals to help visually impaired persons

	3 Explorations on processing time and memory usage
	3.1 Database
	3.2 Pattern recognition process
	3.3 Computation time exploration
	3.3.1 Evaluation of GLCM features
	3.3.2 Feature selection based on correlation
	3.3.3 Feature selection based on calculation complexity

	3.4 Memory usage exploration
	3.4.1 Input image size exploration
	3.4.2 Co-occurrence matrix evaluation
	3.4.3 Space complexity for feature extraction

	4 Classifier evaluation on a 32-bit microcontroller platform
	4.1 Description of prototyping and testing platform
	4.2 Replicating the pattern classifier on the microcontroller
	4.2.1 Exporting the OpenCV model generated by the training
	4.2.2 Inserting the model in the embedded classifier

	4.3 Evaluating the embedded classifier

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References

